Lecture 12 2024/2025 Microwave Devices and Circuits for Radiocommunications

2024/2025

- 2C/1L, MDCR
- Attendance at minimum 7 sessions (course or laboratory)
- Lectures- associate professor Radu Damian
 - Tuesday 16-18, Online, P8
 - E 50% final grade
 - problems + (2p atten. lect.) + (3 tests) + (bonus activity)
 - first test L1: 20-27.02.2024 (t2 and t3 not announced, lecture)
 - 3att.=+0.5p
 - all materials/equipments authorized

- Laboratory associate professor Radu Damian
 - Tuesday 10-12, II.13 / (even weeks)
 - L 25% final grade
 - ADS, 4 sessions
 - Attendance + personal results
 - P 25% final grade
 - ADS, 3 sessions (-1? 25.02.2025)
 - personal homework

General theory Microwave Network Analysis

 V₂⁺ = 0 meaning: port 2 is terminated in matched load to avoid reflections towards the port

$$\Gamma_2 = 0 \longrightarrow V_2^+ = 0$$

S₁₁ and S₂₂ are reflection coefficients at ports
 1 and 2 when the other port is matched

S₂₁ si S₁₂ are signal amplitude gain when the other port is matched

- a,b
 - information about signal power AND signal phase
- S_{ii}
 - network effect (gain) over signal power including phase information

Impedance Matching

Course Topics

- Transmission lines
- Impedance matching and tuning
- Directional couplers
- Power dividers
- Microwave amplifier design
- Microwave filters
- Oscillators and mixers ?

Impedance Matching Impedance Matching with Stubs

Course Topics

- Transmission lines
- Impedance matching and tuning
- Directional couplers
- Power dividers
- Microwave amplifier design
- Microwave filters
- Oscillators and mixers ?

Smith chart, r=1 and g=1

Single stub tuning

Shunt Stub

Single stub tuning

- Series Stub
- difficult to realize in single conductor line technologies (microstrip)

Analytical solutions

Exam / Project

Case 1, Shunt Stub

Shunt Stub

Matching, series line + shunt susceptance

Analytical solution, usage

$$cos(\varphi + 2\theta) = -|\Gamma_S|$$

$$\theta_{sp} = \beta \cdot l = tan^{-1} \frac{\mp 2 \cdot |\Gamma_S|}{\sqrt{1 - |\Gamma_S|^2}}$$

 $|\Gamma_s| = 0.593; \quad \varphi = 46.85^\circ \quad \cos(\varphi + 2\theta) = -0.593 \Rightarrow (\varphi + 2\theta) = \pm 126.35^\circ$

- The sign (+/-) chosen for the series line equation imposes the sign used for the shunt stub equation
 - "+" solution $(46.85^{\circ} + 2\theta) = +126.35^{\circ}$ $\theta = +39.7^{\circ}$ Im $y_s = \frac{-2 \cdot |\Gamma_s|}{\sqrt{1 - |\Gamma_s|^2}} = -1.472$ $\theta_{sp} = \tan^{-1}(\operatorname{Im} y_s) = -55.8^{\circ}(+180^{\circ}) \rightarrow \theta_{sp} = 124.2^{\circ}$

• "-" solution

$$(46.85^{\circ} + 2\theta) = -126.35^{\circ} \qquad \theta = -86.6^{\circ}(+180^{\circ}) \rightarrow \theta = 93.4^{\circ}$$

$$\operatorname{Im} y_{s} = \frac{+2 \cdot |\Gamma_{s}|}{\sqrt{1 - |\Gamma_{s}|^{2}}} = +1.472 \qquad \theta_{sp} = \tan^{-1}(\operatorname{Im} y_{s}) = 55.8^{\circ}$$

Analytical solution, usage

$$(\varphi + 2\theta) = \begin{cases} +126.35^{\circ} \\ -126.35^{\circ} \end{cases} \theta = \begin{cases} 39.7^{\circ} \\ 93.4^{\circ} \end{cases} \operatorname{Im}[y_{s}(\theta)] = \begin{cases} -1.472 \\ +1.472 \end{cases} \theta_{sp} = \begin{cases} -55.8^{\circ} + 180^{\circ} = 124.2^{\circ} \\ +55.8^{\circ} \end{cases}$$

We choose one of the two possible solutions
 The sign (+/-) chosen for the series line equation imposes the sign used for the shunt stub equation

$$l_{1} = \frac{39.7^{\circ}}{360^{\circ}} \cdot \lambda = 0.110 \cdot \lambda$$

$$l_{1} = \frac{93.4^{\circ}}{360^{\circ}} \cdot \lambda = 0.259 \cdot \lambda$$

$$l_{2} = \frac{124.2^{\circ}}{360^{\circ}} \cdot \lambda = 0.345 \cdot \lambda$$

$$l_{2} = \frac{55.8^{\circ}}{360^{\circ}} \cdot \lambda = 0.155 \cdot \lambda$$

$$l_{2} = \frac{55.8^{\circ}}{360^{\circ}} \cdot \lambda = 0.155 \cdot \lambda$$

$$l_{2} = \frac{1000}{360^{\circ}} \cdot \lambda = 0.155 \cdot \lambda$$

Case 2, Series Stub

- Series Stub
- difficult to realize in single conductor line technologies (microstrip)

Matching, series line + series reactance

Analytical solution, usage

$$\cos(\varphi + 2\theta) = |\Gamma_s|$$

$$\theta_{ss} = \beta \cdot l = \cot^{-1} \frac{\mp 2 \cdot |\Gamma_s|}{\sqrt{1 - |\Gamma_s|^2}}$$

 $\Gamma_{\rm s} = 0.555 \angle -29.92^{\circ}$ $|\Gamma_{S}| = 0.555; \quad \varphi = -29.92^{\circ} \qquad \cos(\varphi + 2\theta) = 0.555 \Rightarrow (\varphi + 2\theta) = \pm 56.28^{\circ}$

- The sign (+/-) chosen for the series line equation imposes the sign used for the series stub equation
 - "+" solution $\begin{array}{l} \textbf{``+`' Solution} \\ (-29.92^{\circ} + 2\theta) = +56.28^{\circ} \\ \theta = 43.1^{\circ} \\ \textbf{Im} z_{s} = \frac{+2 \cdot |\Gamma_{s}|}{\sqrt{1 - |\Gamma_{s}|^{2}}} = +1.335 \\ \theta_{ss} = -\cot^{-1}(\textbf{Im} z_{s}) = -36.8^{\circ}(+180^{\circ}) \rightarrow \theta_{ss} = 143.2^{\circ} \end{array}$
 - "-" solution
 - "-" solution $(-29.92^\circ + 2\theta) = -56.28^\circ$ $\theta = -13.2^\circ(+180^\circ) \rightarrow \theta = 166.8^\circ$ $\operatorname{Im} z_{s} = \frac{-2 \cdot |\Gamma_{s}|}{\sqrt{1 - |\Gamma_{s}|^{2}}} = -1.335 \qquad \theta_{ss} = -\operatorname{cot}^{-1}(\operatorname{Im} z_{s}) = 36.8^{\circ}$

Analytical solution, usage

$$(\varphi + 2\theta) = \begin{cases} +56.28^{\circ} \\ -56.28^{\circ} \end{cases} \theta = \begin{cases} 43.1^{\circ} \\ 166.8^{\circ} \end{cases} \operatorname{Im}[z_{s}(\theta)] = \begin{cases} +1.335 \\ -1.335 \end{cases} \theta_{ss} = \begin{cases} -36.8^{\circ} + 180^{\circ} = 143.2^{\circ} \\ +36.8^{\circ} \end{cases}$$

We choose one of the two possible solutions
 The sign (+/-) chosen for the series line equation imposes the sign used for the series stub equation

$$l_{1} = \frac{43.1^{\circ}}{360^{\circ}} \cdot \lambda = 0.120 \cdot \lambda$$

$$l_{1} = \frac{166.8^{\circ}}{360^{\circ}} \cdot \lambda = 0.463 \cdot \lambda$$

$$l_{2} = \frac{143.2^{\circ}}{360^{\circ}} \cdot \lambda = 0.398 \cdot \lambda$$

$$l_{2} = \frac{36.8^{\circ}}{360^{\circ}} \cdot \lambda = 0.102 \cdot \lambda$$

$$l_{2} = \frac{36.8^{\circ}}{360^{\circ}} \cdot \lambda = 0.102 \cdot \lambda$$

$$l_{2} = \frac{36.8^{\circ}}{360^{\circ}} \cdot \lambda = 0.102 \cdot \lambda$$

$$l_{2} = \frac{36.8^{\circ}}{360^{\circ}} \cdot \lambda = 0.102 \cdot \lambda$$

Stub, observations

 adding or subtracting 180° (λ/2) doesn't change the result (full rotation around the Smith Chart)

$$E = \beta \cdot l = \pi = 180^{\circ}$$
 $l = k \cdot \frac{\lambda}{2}, \forall k \in \mathbb{N}$

- if the lines/stubs result with negative "length"/ "electrical length" we add λ/2 / 180° to obtain physically realizable lines
- adding or subtracting 90° (λ/4) change the stub impedance:

$$Z_{in,sc} = j \cdot Z_0 \cdot \tan \beta \cdot l \quad \Leftrightarrow \quad Z_{in,g} = -j \cdot Z_0 \cdot \cot \beta \cdot l$$

 for the stub we can add or subtract 90° (λ/4) while in the same time changing open-circuit ⇔ short-circuit

Microwave Filters

Insertion loss method

- We control the power loss ratio/attenuation introduced by the filter:
 - in the passband (pass all frequencies)
 - in the stopband (reject all frequencies)

Filter specifications

(=1)

Insertion loss method

- We choose the right polynomials to design an low-pass filter (prototype)
- The low-pass prototype are then converted to the desired other types of filters
 - low-pass, high-pass, bandpass, or bandstop

Prototype Filters

(a)

Maximally Flat LPF Prototype

TABLE 8.3 Element Values for Maximally Flat Low-Pass Filter Prototypes ($g_0 = 1$, $\omega_c = 1$, N = 1 to 10)

N	<i>g</i> ₁	<i>g</i> ₂	<i>g</i> 3	<i>g</i> ₄	g 5	<i>8</i> 6	87	<i>g</i> 8	g 9	g ₁₀	<i>g</i> ₁₁
1	2.0000	1.0000									
2	1.4142	1.4142	1.0000								
3	1.0000	2.0000	1.0000	1.0000							
4	0.7654	1.8478	1.8478	0.7654	1.0000						
5	0.6180	1.6180	2.0000	1.6180	0.6180	1.0000					
6	0.5176	1.4142	1.9318	1.9318	1.4142	0.5176	1.0000				
7	0.4450	1.2470	1.8019	2.0000	1.8019	1.2470	0.4450	1.0000			
8	0.3902	1.1111	1.6629	1.9615	1.9615	1.6629	1.1111	0.3902	1.0000		
9	0.3473	1.0000	1.5321	1.8794	2.0000	1.8794	1.5321	1.0000	0.3473	1.0000	
10	0.3129	0.9080	1.4142	1.7820	1.9754	1.9754	1.7820	1.4142	0.9080	0.3129	1.0000

Source: Reprinted from G. L. Matthaei, L. Young, and E. M. T. Jones, *Microwave Filters, Impedance-Matching Networks, and Coupling Structures*, Artech House, Dedham, Mass., 1980, with permission.

TABLE 8.4	Element	Values	for	Equal-Ripple	Low-Pass	Filter	Prototypes	$(g_0 = 1, \omega_c =$
1, N = 1 to 10	, 0.5 dB a	nd 3.0 d	B ri	ipple)				

	0.5 dB Ripple											
N	<i>8</i> 1	82	83	<i>8</i> 4	85	86	87	88	<u>89</u>	<i>g</i> ₁₀	<i>g</i> ₁₁	
1	0.6986	1.0000										
2	1.4029	0.7071	1.9841									
3	1.5963	1.0967	1.5963	1.0000							_	
4	1.6703	1.1926	2.3661	0.8419	1.9841							
5	1.7058	1.2296	2.5408	1.2296	1.7058	1.0000						
6	1.7254	1.2479	2.6064	1.3137	2.4758	0.8696	1.9841					
7	1.7372	1.2583	2.6381	1.3444	2.6381	1.2583	1.7372	1.0000				
8	1.7451	1.2647	2.6564	1.3590	2.6964	1.3389	2.5093	0.8796	1.9841			
9	1.7504	1.2690	2.6678	1.3673	2.7239	1.3673	2.6678	1.2690	1.7504	1.0000		
10	1.7543	1.2721	2.6754	1.3725	2.7392	1.3806	2.7231	1.3485	2.5239	0.8842	1.984	
					3.0 dB	Ripple						
N	<i>g</i> 1	82	83	<i>8</i> 4	85	g 6	8 7	<i>g</i> 8	<u>89</u>	g 10	<i>g</i> 11	
1	1.9953	1.0000										
2	3.1013	0.5339	5.8095									
3	3.3487	0.7117	3.3487	1.0000								
4	3.4389	0.7483	4.3471	0.5920	5.8095							
5	3.4817	0.7618	4.5381	0.7618	3.4817	1.0000						
6	3.5045	0.7685	4.6061	0.7929	4.4641	0.6033	5.8095					
7	3.5182	0.7723	4.6386	0.8039	4.6386	0.7723	3.5182	1.0000				
8	3.5277	0.7745	4.6575	0.8089	4.6990	0.8018	4.4990	0.6073	5.8095			
9	3.5340	0.7760	4.6692	0.8118	4.7272	0.8118	4.6692	0.7760	3.5340	1.0000		
10	0.5004	0 7771	1 (7(0	0.0126	1 7 105	0.01(4	1 70(0	0.0051	1 5 1 4 2	0 (001	5 0000	

Source: Reprinted from G. L. Matthaei, L. Young, and E. M. T. Jones, *Microwave Filters, Impedance-Matching Networks, and Coupling Structures*, Artech House, Dedham, Mass., 1980, with permission.

 For even N order of the filter (N = 2, 4, 6, 8 ...) equal-ripple filters must closed by
 a load impedance

 $g_{N+1} \neq 1$ If the application doesn't allow this, supplemental impedance matching is required (quarterwave transformer, binomial ...) to $g_{L} = 1$

Table 8.4

© John Wiley & Sons, Inc. All rights reserved.
Impedance and Frequency Scaling

- After computing prototype filter's elements:
 - Low-Pass Filters (LPF)
 - cutoff frequency $\omega_0 = 1 \text{ rad/s} (f_0 = 0.159 \text{ Hz})$
 - connected to a source with $R = 1\Omega$
- component values can be scaled in terms of impedance and frequency

Impedance and Frequency Scaling

- LPF Prototype is only used as an intermediate step
 - Low-Pass Filter (LPF)
 - cutoff frequency $\omega_0 = 1 \text{ rad/s} (f_0 = 0.159 \text{ Hz})$
 - connected to a source with R = 1Ω

Summary of Prototype Filter Transformations

Microwave Filters Implementation

Microwave Filters Implementation

- The lumped-element (L, C) filter design generally works well only at low frequencies (RF):
 - lumped-element inductors and capacitors are generally available only for a limited range of values, and can be difficult to implement at microwave frequencies
 - difficulty to obtain the (very low) required tolerance for elements

© John Wiley & Sons, Inc. All rights reserved.

Richards' Transformation

 allows implementation of the inductors and capacitors with lines after the transformation of the LPF prototype to the required type (LPF/HPF/BPF/BSF)

Richards' Transformation

- Filters implemented with Richards' Transformation
 - beneficiate from the supplemental pole at $2 \cdot \omega_c$
 - have the major disadvantage of frequency periodicity, a supplemental non-periodic LPF must be inserted if needed

Kuroda's Identities

- 4 circuit equivalents (a,b)
 - each box represents a unit element, or transmission line, of the indicated characteristic impedance and length ($\lambda/8$ at ω_c). The inductors and capacitors represent short-circuit and open-circuit stubs $\frac{Z_1}{n^2}$

Kuroda's Identities

- 4 circuit equivalents (c,d)
 - each box represents a unit element, or transmission line, of the indicated characteristic impedance and length ($\lambda/8$ at ω_c). The inductors and capacitors represent short-circuit and open-circuit stubs

First Kuroda's Identity

Figure 8.35 © John Wiley & Sons, Inc. All rights reserved.

First Kuroda's Identity – Proof

ABCD matrices, L4

 $\begin{bmatrix} A & B \\ C & D \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ Y & 1 \end{bmatrix} \qquad \begin{bmatrix} A & B \\ C & D \end{bmatrix} = \begin{bmatrix} \cos \beta \cdot l & j \cdot Z_0 \cdot \sin \beta \cdot l \\ j \cdot Y_0 \cdot \sin \beta \cdot l & \cos \beta \cdot l \end{bmatrix}$

Example

Apply Richards's transformation

- Problems:
 - the series stubs would be very difficult to implement in microstrip line technology
 - in microstrip technology it is preferable to have open-circuit stubs (short-circuit requires a viahole to the ground plane)
 - the 4 stubs are physically connected at the same point, an implementation that eliminates/reduces the coupling between these lines is impossible
 - not the case here, but sometimes the normalized impedances are much different from 1. Most circuit technologies are designed for 50Ω lines

Example

Impedance scaling (multiply by 50Ω)

Kuroda's Identities – ADS

freq, GHz

- Richards' transformation and Kuroda's identities are useful especially for low-pass filters in technologies where the series stubs would be very difficult/ impossible to implement (microstrip)
- In the case of other filters (example 3rd order BPF):
 - series inductance can be implemented using K1-K2
 - series capacitance cannot be implemented using shunt stubs

Figure 8.32 © John Wiley & Sons, Inc. All rights reserved.

 For cases where Richards + Kuroda do not offer practical solutions we use circuits called impedance and admittance inverters

$$Z_{in} = \frac{K^2}{Z_L}$$

Impedance inverters

Admittance inverters

 The simplest example of impedance and admittance inverter is the quarter-wave transformer (L3)

- Impedance/admittance inverters can be used to change the structure of a designed filter to a realizable form
- For example a 2nd order BSF

 The series elements can be eliminated/replaced using an admittance inverter

$$\begin{array}{c|c} & & & \\$$

The equivalence of the two schematics (when looking from the left) is proofed by obtaining the same input admittance

 $L_{n} \cdot C_{n} = L'_{n} \cdot C'_{n} = \frac{1}{\omega_{0}^{2}} \implies \frac{1}{Z_{0}^{2}} \cdot \sqrt{\frac{L_{1}}{C_{1}}} = \sqrt{\frac{C'_{1}}{L'_{1}}} \implies Y = Y' \qquad \text{A similar result can be} \\ \sqrt{\frac{L_{2}}{C_{2}}} = \sqrt{\frac{L'_{2}}{C'_{2}}} \implies Y = Y' \qquad \text{A similar result can be} \\ \text{obtained for a bandpase}$ obtained for a bandpass filter

The complete equivalence (when looking from both sides) is obtained by enclosing the series LC circuit between two admittance inverters
L:

- A series LC circuit inserted in series in the circuit can be replaced by a shunt LC circuit inserted in parallel enclosed between 2 admittance inverters
- A shunt LC circuit inserted in series in the circuit can be replaced by a series LC circuit inserted in parallel enclosed between 2 admittance inverters

Practical implementations of impedance/admittance inverters

 Most often the quarter-wave transformer is used

Practical implementations of impedance/admittance inverters

 Implementation with transmission lines and reactive elements

Prototype filters using inverters

- Using impedance/admittance inverters we can implement prototype filters using a single type of reactive elements
 - Shunt C replaced by series L enclosed between 2 inverters

Prototype filters using inverters

- Using impedance/admittance inverters we can implement prototype filters using a single type of reactive elements
 - Series L replaced by shunt C enclosed between 2 inverters

Prototype filters using inverters

- For prototype filters using inverters formulas we have 2.N+1 parameters and N+1 equations (to ensure the equivalence of the 2 schematics) so N parameters can be chosen freely
 - convenient values for the reactance can be chosen, and the required inverters will be computed from the equivalence equations or,
 - convenient inverters can be chosen, and the required reactance values will be computed from the equivalence equations

BPF and BSF using inverters

- The same principle can be applied to the BPF and BSF filters, those can be implemented using N+1 inverters and N resonators (series or shunt LC circuits with resonant frequency ω_o) connected either in series or in parallel enclosed between 2 inverters
 - BPF are implemented with
 - series LC circuits connected in series between inverters
 - shunt LC circuits connected in parallel between inverters
 - BSF are implemented with
 - shunt LC circuits connected in series between inverters
 - series LC circuits connected in parallel between inverters

Lines as resonators

 The impedance of short-circuited or opencircuited line (stub) shows a resonant behavior that can be used to implement required resonators

$$Z_{in} = Z_0 \cdot \frac{Z_L + j \cdot Z_0 \cdot \tan \beta \cdot l}{Z_0 + j \cdot Z_L \cdot \tan \beta \cdot l}$$

Lines as resonators

- Short-circuited line
- For the frequency at which I = λ/4 (ω_o) the line behaves as an shunt LC resonator circuit
 - the line shows capacitive behavior for lower frequencies (I>λ/4)
 - the line shows inductive behavior for higher frequencies (I<λ/4)
- Similar discussion for the open circuited line (equivalent to a series LC resonator around the frequency at which I=λ/4)

BPF/BSP design formulas

- When the admittance inverters are implemented with quarter-wave transformers with Zo characteristic impedance
 - BPF short-circuited shunt stubs with I = \u03c0/4 Z_{0n} \approx \frac{\pi \cdot \Lambda_0 \cdot \Delta}{4 \cdot g_n}\$
 BSF open-circuited shunt stubs with I = \u03c0/4 Z_{0n} \approx \frac{4 \cdot Z_0}{\pi \cdot g_n \cdot \Delta}\$

Example

- Similar to a project assignment
- Follows the amplifier designed as in L8
- 4th order bandpass filter, fo = 5GHz, fractional bandwidth of the passband 10 %
- maximally flat table or formulas for g_n:

n	g _n	Z _{on} (Ω)	
1	0.7654	5.131	$Z_{0n} \approx \frac{\pi \cdot Z_0 \cdot \Delta}{4 \cdot g_n}$
2	1.8478	2.125	
3	1.8478	2.125	
4	0.7654	5.131	

ADS – BPF

freq, GHz

ADS – BPF

freq, GHz

Example

- Disadvantages of the filters using impedance inverters and lines as resonators:
 - short-circuited stubs (via-hole) for BPF
 - often the characteristic impedances for the stubs have values difficult to implement (2.125Ω)

Coupled Line Filters

- A parallel coupled line section model is obtained by even/odd mode analysis
- Even and odd modes are characterized by the characteristic even/odd mode impedances whose required values will impose the lines' geometry (width / distance between lines, depending on the line technology we use)

Coupled Lines

Figure 3.25b © John Wiley & Sons, Inc. All rights reserved

- Even mode characterizes the common mode signal on the two lines
- Odd mode characterizes the differential mode signal between the two lines
- Each of the two modes is characterized by different characteristic impedances

c) ODD MODE ELECTRIC FIELD PATTERN (SCHEMATIC)

b) EVEN MODE ELECTRIC FIELD PATTERN (SCHEMATIC)

Even- and odd-mode characteristic impedance

 Even- and oddmode characteristic impedance design data for coupled microstrip lines on a substrate with ε_r = 10.

Bandpass filter with resonance at $\theta = \pi/2$ ($l = \lambda/4$)

Figure 8.44 © John Wiley & Sons, Inc. All rights reserved.

We get a Nth order filter with N+1 parallel coupled line section

- Equivalent circuits for
 - transmission lines of length 2θ
 - admittance inverters

 We get a 2nd order BPF behavior with 3 coupled lines sections

Figure 8.45def © John Wiley & Sons, Inc. All rights reserved.

Coupled Line Filters design formulas

 Compute the inverters from prototype parameters

$$Z_0 \cdot J_1 = \sqrt{\frac{\pi \cdot \Delta}{2 \cdot g_1}} \qquad \qquad Z_0 \cdot J_n = \frac{\pi \cdot \Delta}{2 \cdot \sqrt{g_{n-1} \cdot g_n}}, n = \overline{2, N} \qquad \qquad Z_0 \cdot J_{N+1} = \sqrt{\frac{\pi \cdot \Delta}{2 \cdot g_N \cdot g_{N+1}}}$$

• Compute coupled line parameters Zoe/Zoo (all of length $l=\lambda/4$)

$$\begin{split} & Z_{0e,n} = Z_0 \cdot \left[1 + J_n \cdot Z_0 + (J_n \cdot Z_0)^2 \right] \\ & Z_{0o,n} = Z_0 \cdot \left[1 - J_n \cdot Z_0 + (J_n \cdot Z_0)^2 \right] \end{split} \qquad n = \overline{1, N+1} \end{split}$$

Example

- Similar to a project assignment
- Follows the amplifier designed as in L10
- 4th order bandpass filter, fo = 5GHz, fractional bandwidth of the passband 10 %
- o.5dB equal-ripple table for g_n followed by filter design formulas

n	g	ZoJn	Zoe	Zoo
1	1.6703	0.306664	70.04	39.37
2	1.1926	0.111295	56.18	45.05
3	2.3661	0.09351	55.11	45.76
4	0.8419	0.111294	56.18	45.05
5	1.9841	0.306653	70.03	39.37

ADS – coupled line BPF

ADS – coupled line BPF

Examples

Figure 8.55 Courtesy of LNX Corporation, Salem, N.H.

Bandpass Filters Using Capacitively Coupled Series Resonators

 The gaps between the resonators (~λ/2) generate a capacitive coupling between two resonators and can be approximated as series capacitors

Bandpass Filters Using Capacitively Coupled Series Resonators

• From the real physical length of the resonators, some part is used implement a admittance inverter (the remainder $\phi = \pi$, $l = \lambda/2$, resonator)

Figure 8.50 © John Wiley & Sons, Inc. All rights reserved.

Bandpass Filters Using Capacitively Coupled Series Resonators design

Compute the inverters (similar to coupled lines)

$$Z_0 \cdot J_1 = \sqrt{\frac{\pi \cdot \Delta}{2 \cdot g_1}} \qquad \qquad Z_0 \cdot J_n = \frac{\pi \cdot \Delta}{2 \cdot \sqrt{g_{n-1} \cdot g_n}}, n = \overline{2, N} \qquad \qquad Z_0 \cdot J_{N+1} = \sqrt{\frac{\pi \cdot \Delta}{2 \cdot g_N \cdot g_{N+1}}}$$

Compute capacitive susceptances

$$B_n = \frac{J_n}{1 - (Z_0 \cdot J_n)^2}, n = \overline{1, N + 1}$$

 Compute the line lengths that must be "borrowed" to implement the inverters

 $\phi_n = -\tan^{-1}(2 \cdot Z_0 \cdot B_n), n = \overline{1, N+1} \qquad \phi_n < 0, n = \overline{1, N+1}$ $\bullet_n < 0, n = \overline{1, N+1}$

Equivalent circuits for short sections of transmission lines

ABCD matrix (L5)

short line, model with lumped elements is valid

 $----o \quad A = \cos\beta \cdot l \quad B = j \cdot Z_0 \cdot \sin\beta \cdot l$

Equivalent circuits for short sections of transmission lines

- The shunt element is capacitive $Z_3 = \frac{1}{j \cdot Y_0 \cdot \sin \beta \cdot l}$
- Series elements are equal, and inductive

$$\cos \beta \cdot l = 1 + \frac{Z_1}{Z_3} = 1 + \frac{Z_2}{Z_3}$$

$$Z_1 = Z_2 = Z_3 \cdot (\cos \beta \cdot l - 1) = -j \cdot Z_0 \cdot \frac{\cos \beta \cdot l - 1}{\sin \beta \cdot l} = j \cdot Z_0 \cdot \tan \frac{\beta \cdot l}{2}$$

$$= \text{Equivalent circuit}$$

$$j\frac{X}{2} = Z_0 \cdot \tan \frac{\beta \cdot l}{2}$$

$$B = \frac{1}{Z_0} \cdot \sin \beta \cdot l$$

Equivalent circuits for short sections of transmission lines

- depending on the characteristic impedance:
 - high Zo >>

$$\sum_{X = Z_0 \beta l} X \cong Z_0 \cdot \beta \cdot l \qquad \beta \cdot l < \frac{\pi}{4} \qquad Z_0 = Z_h$$

Iow Zo <<</p>

$$\underbrace{ = }_{0}^{\circ} B = Y_{0}\beta l$$

$$B \cong Y_{0} \cdot \beta \cdot l$$

$$\beta \cdot l < \frac{\pi}{4}$$

$$Z_{0} = Z_{l}$$

Stepped-impedance low-pass filter

- Series L, shunt C, we realize low-pass filters
 We use
 - lines with high characteristic impedance to implement an series inductor

$$\beta \cdot l = \frac{L \cdot R_0}{Z_h}$$

 lines with low characteristic impedance to implement a shunt capacitor

 $\beta \cdot l = \frac{C \cdot Z_l}{R_0}$ usually the highest and lowest characteristic impedance that can be practically fabricated

Stepped-impedance LPF

 Not all the lines will result with the same length so the filter response is not periodic in frequency

(c)

Figure 8.40 © John Wiley & Sons, Inc. All rights reserved.

 LPF with 8GHz cutoff frequency, 6th order. Maximum realizable impedance is 150Ω and lowest 15Ω.

n	g _n	L/C _n	Z	θ _n [rad]	θ _n [°]
1	0.5176	0.206pF	15	0.155	8.90
2	1.4142	1.407nH	150	0.471	27.01
3	1.9318	0.769pF	15	0.580	33.21
4	1.9318	1.922nH	150	0.644	36.89
5	1.4142	0.563pF	15	0.424	24.31
6	0.5176	0.515nH	150	0.173	9.89

ADS – Stepped-impedance LPF

ADS – Stepped-impedance LPF

ADS – Stepped-impedance LPF – compared with lumped elements

Examples

Figure 8.55 Courtesy of LNX Corporation, Salem, N.H.

Microwave Amplifiers

Broadband amplifiers

Broadband/Wideband amplifiers

- Achieved by some design techniques (only at the expense of gain, complexity)
 - 1. Compensated matching networks
 - 2. Resistive matching networks
 - 3. Negative feedback
 - 4. Balanced amplifiers
 - 5. Distributed amplifiers
 - 6. Differential amplifiers

Balanced amplifiers

two identical amplifiers with two hybrid couplers
 3 dB / 90° to cancel input and output reflections

$$\begin{split} S_{21} &= \frac{-j}{2} \cdot \left(G_A + G_B \right) \\ S_{11} &= \frac{1}{2} \cdot \left(\Gamma_A - \Gamma_B \right) \end{split} \qquad \begin{aligned} F &= \frac{1}{2} \cdot \left(F_A + F_B \right) \\ S_{11} &= \frac{1}{2} \cdot \left(\Gamma_A - \Gamma_B \right) \end{aligned} \qquad \begin{aligned} F &= \frac{1}{2} \cdot \left(F_A + F_B \right) \\ S_{11} &= 0 \end{aligned}$$

Balanced amplifiers

Distributed amplifiers

Distributed amplifiers

 the phase delays on the gate (input) and drain (output) lines are synchronized

$$\gamma_g = \alpha_g + j \cdot \beta_g \qquad \gamma_d = \alpha_d + j \cdot \beta_d \qquad \beta_g \cdot l_g = \beta_d \cdot l_d$$

Power gain

$$G = \frac{g_m^2 \cdot Z_d \cdot Z_g}{4} \cdot \frac{\left(e^{-N \cdot \alpha_g \cdot l_g} - e^{-N \cdot \alpha_d \cdot l_d}\right)^2}{\left(e^{-\alpha_g \cdot l_g} - e^{-\alpha_d \cdot l_d}\right)^2}$$

Lossless power gain

$$G = \frac{g_m^2 \cdot Z_d \cdot Z_g \cdot N^2}{4}$$

Distributed amplifiers

$$N_{opt} = \frac{\ln(\alpha_g \cdot l_g) - \ln(\alpha_d \cdot l_d)}{\alpha_g \cdot l_g - \alpha_d \cdot l_d}$$

Differential amplifiers

 In differential mode the input capacitances of the two transistors are connected in series
 Unity gain frequency is doubled

Differential amplifiers

We use circuits to transition from an unbalanced signal to a balanced signal (or vice versa)

- hybrid couplers 3dB / 180°
- "balun" (balanced unbalanced)

Compensated matching networks

 Control the design of the matching networks at more (at least 2) frequencies and impose the same gain

Microwave Amplifiers

Multistage Amplifier Design
Multistage amplifiers

- Interstage matching can be designed in two modes:
 - Each stage is matched to a virtual Γ = o

Multistage amplifiers

- Interstage matching can be designed in two modes:

Example multistage LNA

- Similar to the project assignment
- LNA using ATF-34143 providing:
 - G = 20dB
 - F = 1dB
 - @f = 5GHz

Example

- ATF-34143 at Vds=3V Id=20mA.
- @5GHz
 - S11 = 0.64∠139°
 - S12 = 0.119∠-21°
 - S21 = 3.165 ∠16°
 - S22 = 0.22 ∠146°
 - Fmin = 0.54 (typically[dB] !)
 - Γ_{opt} = 0.45 ∠174°

• r_n = 0.03

Example, LNA @ 5 GHz

- ATF-34143 at Vds=3V Id=20mA.
- $(a)_{5}GHz$ • $S_{11} = 0.64 \angle 139^{\circ}$ • $S_{12} = 0.119 \angle -21^{\circ}$ • $S_{21} = 3.165 \angle 16^{\circ}$ • $S_{21} = 3.165 \angle 16^{\circ}$
 - S22 = 0.22 ∠146°
 - Fmin = 0.54 (tipic [dB]
 - Γ_{opt} = 0.45 ∠174°
 - r_n = 0.03

	!ATF-34143 !S-PARAMETERS at Vds=3V Id=20mA. LAST UPDATED 01-29-99
	# ghz s ma r 50
	3.0 0.69 -162 4.762 62 0.102 7 0.23 -156
	4.0 0.65 166 3.806 38 0.111 -8 0.22 174
	5.0 0.64 139 3.165 16 0.119 -21 0.22 146
	6.0 0.65 114 2.706 -5 0.125 -35 0.23 118
	7.0 0.66 89 2.326 -27 0.129 -49 0.25 91
	8.0 0.69 67 2.017 -47 0.133 -62 0.29 67
	9.0 0.72 48 1.758 -66 0.135 -75 0.34 46
R1	IFREQ FODT GAINIMA OPT RN/20
	IGHZ UB MAG ANG -
	2.0 0.19 0.71 66 0.09
	2.5 0.23 0.65 83 0.07
	3.0 0.29 0.59 102 0.06
	4.0 0.42 0.51 138 0.03
	5.0 0.54 0.45 174 0.03
	6.0 0.67 0.42 -151 0.05
	7.0 0.79 0.42 -118 0.10
	8.0 0.92 0.45 -88 0.18
	9.0 1.04 0.51 -63 0.30

Multistage amplifiers

- If we need more power gain than only one transistor can supply
 - design target 20dB
 - MAG @5GHz = 14.248 dB < 20dB</p>
- We use Friis formula to separate the target:
 - Power gain
 - Noise
- on two amplifier stages

$$F_{cas} = F_1 + \frac{F_2 - 1}{G_1} + \frac{F_3 - 1}{G_1 \cdot G_2} + \frac{F_4 - 1}{G_1 \cdot G_2 \cdot G_3} + \cdots$$

- Effects of Friis Formula:
 - it's essential that the first stage is as noiseless as possible even if that means sacrificing power
 - the second stage can be optimized for power gain
- Friis Formula <u>must</u> be used in linear scale!
- Avago/Broadcom AppCAD
 - AppCAD Free Design Assistant Tool for Microsoft Windows → Google

$$G_{cas} = G_1 \cdot G_2$$
 $F_{cas} = F_1 + \frac{1}{G_1} (F_2 - 1)$

Friis formula

- first stage: low noise factor, probably resulting in a smaller gain
- second stage: high gain, probably resulting in higher noise factor
- It's essential to introduce a design margin (reserve: ΔF , ΔG)
 - $G = G_{design} + \Delta G$
 - $F = F_{design} \Delta F$
- Interpretation of the design target
 - G > G_{design}, better, but it's not required to sacrifice other parameters to maximize the gain
 - F < F_{design}, better, the smaller the better, we must target the smallest possible noise factor as long as the other design parameters are met

Friis formula

- first stage: low noise factor, probably resulting in a smaller gain
- second stage: high gain, probably resulting in higher noise factor
- Separation of the design parameters on the 2 amplification stages (Estimated!)
 - input stage: F1 = 0.7 dB, G1 = 9 dB
 - output stage: F2 = 1.2 dB, G2 = 13 dB
- To verify the result apply Friis formula
- First transform to linear scale !

$$F_{1} = 10 \frac{F_{1}[dB]}{10} = 10^{0.07} = 1.175$$

$$F_{2} = 10^{-10} = 10^{0.12} = 1.318$$

$$F_{cas} = F_{1} + \frac{1}{10} (F_{2} - 1) = 1.215$$

 $G_1^{(12)} = 0.846 \, dB$ $F_{cas} = 10 \cdot \log(1.215) = 0.846 \, dB$

$$G_{1} = 10 \frac{G_{1}[dB]}{10} = 10^{0.9} = 7.943$$
$$G_{2} = 10^{-10} = 10^{1.3} = 19.953$$
$$G_{cas} = G_{1} \cdot G_{2} = 158.49$$
$$G_{cas} = 10 \cdot \log(158.49) = 22 \, dB$$

Avago/Broadcom AppCAD

		- F	-1-		/340-1121-112					
NoiseCalc	Set	Number of Stag	ges	= 2	Ualcul	ate [F4]				
			-		Stage 1	Stage	e 2	1		
		Stage Da	ita	Units		A36	>-			
		Stage Name	:		Avago Duplemer	Ava ATE-3	go 0XXX			
		Noise Figure		dB	0.	7	1.2			
		Gain Output IP3		dB		9	13			
				dBm	10	0	14.5			
		dNF/dTemp dG/dTemp Stage Analysis: NF (Temp corr) Gain (Temp corr)		dB/°C	0 0					
				dB/°C		0	0			
]		
				dB	0.7	0	1.20			
				dB	9.0	0	13.00			
		Input Power		dBm	-50.0	0 -	41.00			
		Output Power		dBm	-41.0	о -	28.00			
		d NF/d NF		dB/dB	0.9	17	0.15			
		d NF/d Gain		dB/dB	-0.0	3	0.00			
		d IP3/d IP3		dBm/dBm	0.0	0	1.00			
Enter System Paramete	ers:		Sys	tem Analysia.						
Input Power	-50	dBm		Gain =	22.00	dB		Input IP3 =	-7.50	dBm
Analysis Temperature	e 25	°C	N	oise Figure =	0.85	dB		Output IP3 =	14.50	dBm
Noise BW	1	MHz	N	oise Temp -	02.04	°К		Input IM level =	-135.00	dBm
Ref Temperature	25	°C		SNR =	63.13	dB		Input IM level =	-85.00	dBC
S/N (for sensitivity)	10	dB		MDS =	-113.13	dBm	0	utput IM level =	-113.00	dBm
Noise Source (Ref)	290	۴K		Sensitivity =	-103.13	dBm	0	utput IM level =	-85.00	dBC
10 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -	146		N	Noise Floor =	-173.13	dBm/Hz		SFDB =	70.42	dB

Multistage amplifier design

- Separation of the design parameters on the 2 amplification stages (Estimated!)
 - input stage: F1 = 0.7 dB, G1 = 9 dB
 - output stage: F2 = 1.2 dB, G2 = 13 dB
 - total: F = 0.85 dB, G = 22 dB
- Meets design specifications (with design margin)
- We can reuse some of the results in the single stage LNA design (Lecture 10)
 - input matching can be used for the input of the first stage very low noise, good enough power gain
 - output matching was designed for maximum gain, can be used for the output of the second stage
 - input and output matching were designed for 50Ω source and load, similar to current conditions

Multistage amplifier design

- Gain computation
 - Interstage matching can supplement the gain for both amplifier stages
 - The design for input and output matching must be achieved on a single transistor schematic (recommended: easier)

- We favor optimization for noise (low/minimum)
- Also considered
 - Power gain (can be lower, but not too much)
 - Bandwidth (through Q, quality factor)
 - Stability

- For the input matching circuit
 - noise circle CZ: 0.75dB
 - input constant gain circles CCCIN: 1dB, 1.5dB, 2 dB
- We choose (small Q → wide bandwidth) position m1

If we can afford a 1.2dB decrease of the input gain for better NF,Q (Gs = 1 dB), position m1 above is better
 We favor better (smaller) NF

G₅₁: Position m1 in complex plane, 1dB $\Gamma_{\rm S} = 0.412 \angle -178^{\circ}$ $|\Gamma_{S}| = 0.412; \quad \varphi = -178^{\circ}$ $\operatorname{Im}[y_{S}(\theta)] = \frac{\mp 2 \cdot |\Gamma_{S}|}{\sqrt{1 - |\Gamma_{S}|^{2}}}$ $\cos(\varphi + 2\theta) = -|\Gamma_{S}|$ $\cos(\varphi + 2\theta) = -0.412 \Rightarrow (\varphi + 2\theta) = \pm 114.33^{\circ}$ $\theta_{sp} = \tan^{-1} \left(\operatorname{Im}[y_{S}(\theta)] \right) = \tan^{-1} \left(\frac{\mp 2 \cdot |\Gamma_{S}|}{\sqrt{1 - |\Gamma_{S}|^{2}}} \right)$ $(\varphi + 2\theta) = \begin{cases} +114.33^{\circ} \\ -114.33^{\circ} \end{cases} \theta = \begin{cases} 146.2^{\circ} \\ 31.8^{\circ} \end{cases} \operatorname{Im}[y_{S}(\theta)] = \begin{cases} -0.904 \\ +0.904 \end{cases} \theta_{sp} = \begin{cases} 137.9^{\circ} \\ 42.1^{\circ} \end{cases}$

Output matching stage 2 (L2)

F1 = 0.7 dB, G1 = 9 dB

F2 = 1.2 dB, G2 = 13 dB

- We favor optimization for gain (high/maximum)
- Also considered
 - Bandwidth (through Q, quality factor)
 - Stability
- noise is not an issue, output matching doesn't influence noise factor

Output matching stage 2 (L2)

output constant gain circles CCCOUT: -0.4dB, -0.2dB, odB, +0.2dB
 The lack of noise restrictions allows optimization for better gain (close to maximum – position m4)

Output matching stage 2 (L2)

G_{1,2}: Position m4 in complex plane, o.2dB $|\Gamma_L| = 0.186; \quad \varphi = -132.9^{\circ}$ $\Gamma_{I} = 0.186 \angle -132.9^{\circ}$ $\operatorname{Im}[y_L(\theta)] = \frac{-2 \cdot |\Gamma_L|}{\sqrt{1 - |\Gamma_L|^2}} = -0.379$ $\cos(\varphi + 2\theta) = -|\Gamma_I|$ $\cos(\varphi + 2\theta) = -0.186 \Rightarrow (\varphi + 2\theta) = \pm 100.72^{\circ}$ $\theta_{sp} = \tan^{-1} \left(\operatorname{Im}[y_L(\theta)] \right) = \tan^{-1} \left(\frac{\mp 2 \cdot |\Gamma_L|}{\sqrt{1 - |\Gamma_L|^2}} \right)$ ~

$$(\varphi + 2\theta) = \begin{cases} +100.72^{\circ} \\ -100.72^{\circ} \end{cases} \theta = \begin{cases} 116.8^{\circ} \\ 16.1^{\circ} \end{cases} \operatorname{Im}[y_{L}(\theta)] = \begin{cases} -0.379 \\ +0.379 \end{cases} \theta_{sp} = \begin{cases} 159.3^{\circ} \\ 20.7^{\circ} \end{cases}$$

- Also considered
 - Bandwidth (through Q, quality factor)
 - Stability

 We influence the noise factor of the second stage, the noise must be considered but with less restrictive conditions (Friis shows that higher noise is acceptable).

Multistage amplifier

Power gain

$$G_{T}[dB] = G_{S1}[dB] + G_{0}[dB] + G_{I}[dB] + G_{0}[dB] + G_{L2}[dB]$$

$$G_{0} = |S_{21}|^{2} = 10.017 = 10.007 \ dB$$

$$G_{T}[dB] = 1 \ dB + 10 \ dB + G_{I}[dB] + 10 \ dB + 0.2 \ dB$$

$$G_{T}[dB] = 21.2 \ dB + G_{I}[dB]$$

 Interstage match design must provide at least o.8dB gain to meet specifications, by better match for the output of the first transistor and for the input of the second transistor

 A single transmission line keeps constant the magnitude of the reflection coefficient

- Can be designed in two ways:
 - starting from the output of the first stage (reflection coefficient S22^{*}) towards the circles (drawn for the second stage):
 - stability
 - gain
 - noise
 - starting from the input of the second stage (reflection coefficient S11^{*}) towards the circles (drawn for the first stage):
 - stability
 - gain

 First design direction has the advantage to offer control over the noise introduced by the second stage

Starting point – complex conjugate

A single

transmission line allows reaching a point that cannot be optimized

- G_{L1} = 0.2dB
- G_{S2} = 1 dB
- $F_2 = 0.7 \, dB$
- Only one parameter is available for wide band performance tuning

ADS

freq, GHz

ADS

freq, GHz

 Using multiple transmission lines for matching each stage to a intermediate Γ=o (virtual) allows detailed control over final reflection coefficient (and thus gain/noise)

- Instead of a single match design we have to design two matching networks
- However both matching networks are anchored to a fixed point (50Ω, Γ=0) so we can use design formulas (Impedance Matching with Stubs)
- Also, due to the presence of multiple networks, we can target precise positions (reflection coefficients) on both stages

Multistage amplifier

Power gain

- $G_{T}[dB] = G_{S1}[dB] + G_{0}[dB] + G_{L1}[dB] + G_{S2}[dB] + G_{0}[dB] + G_{L2}[dB]$
- $G_T[dB] = 1 dB + 10 dB + G_{L1}[dB] + G_{S2}[dB] + 10 dB + 0.2 dB$
- $G_T[dB] = 21.2 \ dB + G_{L1}[dB] + G_{S2}[dB]$
- Interstage match design must provide at least o.8dB in total gain to meet specifications, by separately better matching the output of the first transistor and for the input of the second transistor

 Using multiple transmission lines for matching each stage to a intermediate Γ=o (virtual) allows detailed control over reflection coefficient on both stages

 One of the stages creates through its matching network a reflection coefficient Γ=o towards which the other stage is matched

The two shunt stubs combine into a single one

- series line →
 moves around
 the center of the
 SC
 shunt stub → on
 - the circle g=1

- For every stage we use a series line and a shunt stub
 - the series line moves the reflection coefficient from the desired starting point on the unity conductance circle g=1
 - the shunt stub moves the point to the center of the Smith Chart (Zo match)
- The two shunt stubs will then combine into one

Output matching stage 1 (L1)

- **G**_{L1} (we use the same point <- output L2), o.2dB $\Gamma_L = 0.186 \angle -132.9^\circ$ $|\Gamma_L| = 0.186; \quad \varphi = -132.9^\circ$ $\cos(\varphi + 2\theta) = -|\Gamma_L|$ $\operatorname{Im}[y_L(\theta)] = \frac{-2 \cdot |\Gamma_L|}{\sqrt{1 - |\Gamma_L|^2}} = -0.379$ $\cos(\varphi + 2\theta) = -0.186 \Rightarrow (\varphi + 2\theta) = \pm 100.72^\circ$
- the length of the shunt stub θ_{sp} is not calculated because it is not needed

$$(\varphi + 2\theta) = \begin{cases} +100.72^{\circ} \\ -100.72^{\circ} \end{cases} \theta = \begin{cases} 116.8^{\circ} \\ 16.1^{\circ} \end{cases} \operatorname{Im}[y_{L}(\theta)] = \begin{cases} -0.379 \\ +0.379 \end{cases}$$

Output matching stage 1 (L1)

Equation	Solution L1A	Solution L1B			
Φ+2θ	+100.72°	-100.72°			
θ	116.8°	16.1°			
$Im[y(\theta)]$	-0.379	+0.379			

Verify stage 1

Input matching stage 2 (S2)

G_{S2} (moving from Γ_{S2} we choose towards complex plane origin – m₃ – gain 2dB)

Input matching stage 2 (S2)

- **G**_{S2} (going from m3 towards origin), 2dB $\Gamma_{S2} = 0.461 \angle -142.66^{\circ}$ $|\Gamma_{S2}| = 0.461; \quad \varphi = -142.66^{\circ}$ $\cos(\varphi + 2\theta) = -|\Gamma_{S2}|$ $\operatorname{Im}[y_{S2}(\theta)] = \frac{\mp 2 \cdot |\Gamma_{S2}|}{\sqrt{1 - |\Gamma_{S2}|^2}}$ $\cos(\varphi + 2\theta) = -0.461 \Rightarrow (\varphi + 2\theta) = \pm 117.45^{\circ}$
- the length of the shunt stub θ_{sp} is not calculated because it is not needed

$$(\varphi + 2\theta) = \begin{cases} +117.45^{\circ} \\ -117.45^{\circ} \end{cases} \theta = \begin{cases} 130.1^{\circ} \\ 12.6^{\circ} \end{cases} \operatorname{Im}[y_{s2}(\theta)] = \begin{cases} -1.039 \\ +1.039 \end{cases}$$

Input matching stage 2 (S2)

Equation	Solution S2A	Solution S2B			
Φ+2θ	+117.45°	-117.45°			
θ	130.1°	12.6°			
$Im[y(\theta)]$	-1.039	+1.039			

Verify stage 2

 According to the conclusions of the Friis formula, the second stage obtains a higher gain because a higher noise is acceptable.

Merging the two shunt stubs

- The two shunt stubs merge into a single one
 There are 4 possible combinations depending on how we chose the electrical length for the two series lines
 - for each chosen electric length (θ) the corresponding Im[y(θ)] must be used
- Ex:

$$\theta_{L1} = 116.8^{\circ} \quad \theta_{S2} = 130.1^{\circ} \qquad \text{Im}[y_{sp}] = \text{Im}[y_{L1}(\theta)] + \text{Im}[y_{S2}(\theta)] = -1.418$$
$$\theta_{sp} = \tan^{-1}(\text{Im}[y_{sp}]) \qquad \theta_{sp} = 125.2^{\circ}$$

Merging the two shunt stubs

- 4 possible combinations
 - the admittances are in parallel and add up, not the electrical lengths

Merging the two shunt stubs

Smith Chart

- series line → moves around the center of the SC
 shunt stub → on
 - the circle g=1

Merge 1, Smith Chart

Merge 1, ADS

Merge 2, Smith Chart

Merge 2, ADS

Merge 3, Smith Chart

Merge 3, ADS

Merge 4, Smith Chart

Merge 4, ADS

Interstage matching 2

- All the combinations obtained meet the target conditions for gain and noise
- Choose a convenient one depending on:
 - the physical dimensions of the lines

$$=\frac{\theta}{360^{\circ}}\cdot\lambda$$

- frequency bandwidth/flatness
- stability
- performance (noise/gain)
- input and output reflection
- etc.

Supplement Mini Project

- microstrip lines
 - dielectric layer
 - plane metallization (ground plane)
 - traces which will control:
 - characteristic impedance
 - physical/electrical length

Figure 3.25a © John Wiley & Sons, Inc. All rights reserved

quasi TEM line

quasi TEM line, EmPro

		Total H	:(dB) R	efere	nce va	lue: :	15.138	85 A/n	n				_							
ł	-30	0.161	-25	5.852		-	21.54	4		-17.2	35		-12.9	926		-8.61	L74		-4.3087	0
		۲		*		1							•	•	•	*	•		*	•
1	٠	,		1	*	1	*	-	-	-4	-		-		*		÷.	*	*	4
	*	٠		1	1	*	^			-		7		1		*		*	*	
•	*		1		1	1	-	-	-	-4	-			•		•				4
	*			1	1	1	*	1	1	4	-	-		1						
	*				1	1	1	- 🔺	-	4	-	-		2	1					*
					1	>	1	-	4	-	-			*						
•						>	-	-	-	-	-	-	-	×					•	
•					>	1	-	-	4	4	-	-	-	>	2					
•				7	7	1	-	-	-	4	-	-	-							4
						>	1	-	4	4	-		-	>					4	*
						>	-		4	4	4	-	-	2						
	 				6	5	-		-	-	-	-		>		- 🏘		4	4	
			- q	÷.	4	5	1	-			-	-	-	>	1	4	4	4	1	
				4	4	6	4.	4	-	-	4	-	4-	4	1	, 4 ,		-		1
•			4			K								>						
																-	1	1		-
	4	-	-	4												-	-	1	-	-
	A		-	-									-			7		7	~	-
•	^			-									>6	-					-	-
•	۵.	-		-		-								-				- 큦	-	-
•	*	>	-	-		-			-		Z									>
			-	-	-	-			-								-		-	

quasi TEM line, EmPro

	Alex .
)
· · · · · · · · · · · · · · · · · · ·	

quasi TEM line, EmPro

Total S	av :(dBp) Referend	e value: 86569.6	W/m **2					
								(85,42,48)
-33.583	-28.786	-23.988	-19.19	-14.393	-9.5952	-4.7976	0	
			New York					

quasi TEM

a) COUPLED STRIP GEOMETRY

~ quasi TEM

c) ODD MODE ELECTRIC FIELD PATTERN (SCHEMATIC)

 Equivalent geometry of a quasi-TEM microstrip line with effective dielectric constant homogeneous medium

Empirical formulas

$$A = \frac{Z_0}{60} \sqrt{\frac{\epsilon_r + 1}{2}} + \frac{\epsilon_r - 1}{\epsilon_r + 1} \left(0.23 + \frac{0.11}{\epsilon_r} \right)$$
$$B = \frac{377\pi}{2Z_0 \sqrt{\epsilon_r}}.$$

Figure 3.26b © John Wiley & Sons, Inc. All rights reserved.

$$\frac{W}{d} = \begin{cases} \frac{8e^{A}}{e^{2A} - 2} & \text{for } W/d < 2\\ \frac{2}{\pi} \left[B - 1 - \ln(2B - 1) + \frac{\epsilon_{r} - 1}{2\epsilon_{r}} \left\{ \ln(B - 1) + 0.39 - \frac{0.61}{\epsilon_{r}} \right\} \right] & \text{for } W/d > 2, \end{cases}$$

Characteristic impedance

Large impedances require narrow traces Small impedances require wide traces

 $k_0 = \frac{2\pi f}{c}$ $\beta \ell = \sqrt{\epsilon_e} k_0 \ell,$

Microstrip standardization

- Standardization
 - dimensions in mil
 - 1 mil = 10⁻³ inch
 - 1 inch = 2.54 cm
- Trace thickness
 - based on the weight of the deposited copper
 - oz/ft²
 - 10z=28.35g and 1ft=30.48cm

Weight deposited	of the d copper	Trace t	hickness
oz/ft²	g/ft²	inch	mm
0.5	14.175	0.0007	0.0178
1.0	28.35	0.0014	0.0356
2.0	56.7	0.0028	0.0712

Microstrip standardization

 Typically the height of the dielectric layers is also standardized in mil

Standard Thickness

RO4003C:

0.008" (0.203mm), 0.012 (0.305mm), 0.016" (0.406mm),

0.020" (0.508mm)

0.032" (0.813mm), 0.060" (1.524mm)

RO4350B:

*0.004" (0.101mm), 0.0066" (0.168mm) 0.010" (0.254mm), 0.0133 (0.338mm), 0.0166 (0.422mm), 0.020" (0.508mm) 0.030" (0.762mm), 0.060" (1.524mm)

ADS linecalc

 In schematics: >Tools>LineCalc>Start
 for Microstrip lines >Tools>LineCalc>Send to Linecalc

LineCalc/untitled						- • X
e Simulation	Options Help					
) 📂 🗖 🛊						
Component						
Type MLIN	TD M	IN: TL25	•			
Substrate Parame	eters	•	Physical W	13.660	(mil 💌	
н	15.000	mil 🔹 🔺	L	386.030	mil	
Er	9.600	N/A •			N/A *	
Mur	1.000	N/A V			[N/A *]	
Cond	5.96E+7	N/A *	Synthesize	Analy	/ze	
Hu	3.9e+034	mil 🔻				K Eff = 6 276
т	1. <mark>40</mark> 0	mil 🔻	Electrical			A_DB = 0.060
TanD	1.000- 4		ZO	50.098900	Ohm 🔻	SkinDepth = 0.025
Component Param	eters		E_Eff	294.984000	deg 🔻	
Freq	10.000	GHz 🔻			[N/A *]	
Wall 1	1.0E+30	mil 🔻			N/A *	
Wall2	1.0E+30	mil 💌			N/A *	
ADS linecalc

- Define substrate (receive from schematic)
- 2. Insert frequency
- 3. Insert input data
 - Analyze: W,L → Zo,E or Ze,Zo,E / at f [GHz]
 - Synthesis: Zo,E → W,L / at f [GHz]

	TD M	IN+ TI 25					
Substrate Para	ameters		•	Physical W L	13.660 386.030	mil 🔻	
Er	9.600	N/A				N/A *	
Mur Cond	1.000 5.96E+7	N/A N/A		Synthesize	Analy	/ze	Calculated Results
Hu T	3.9e+034	mil	• •				K_Eff = 6.276 A DB = 0.060
Componenting	1 0000 4		<u> </u>	zo ElEff	50.098900 294.984000	Ohm ▼ deg ▼	SkinDepth = 0.025
Freq Wall1	10.000 1.0E+30	GHz	•			N/A N/A ~	

ADS linecalc

- Can be used for:
 - microstrip lines MLIN: W,L ⇔ Zo,E
 - microstrip coupled lines MCLIN: W,L,S ⇔ Ze,Zo,E

LineCalc/untitled	_ = ×	LineCalc/untitled
File Simulation Options Help Component Type MLIN JD Alumina		File Simulation Options Help Component Type MCLIN JD Alumina
H 15.000 mil	Calculated Results K_Eff = 6.276 A_DB = 0.060 SkinDepth = 0.025	H 15.000 mi Er 9.600 N/A I Mur 1.000 N/A I Cond 5.96E+7 N/A I Hu 3.9e+034 mi I T 1.400 mi I I T 1.400 mi I I Component Parameters I I I I Freq 10.000 IHz I I I N/A V I I I I N/A V I I I I L 1.000 I I I I I 1.000 I I I I I I 1.000 I I I I I I I I I I I I I I I I I I I I I I I I I I I I
Values are consistent		Values are consistent

ADS linecalc

LineCalc/unti	tled						- • ×
File Simulatio	n Options Help						
Component Type MCLIN		CLIN: MCLIN	_DEFAUL	т •			
Substrate Pa	rameters 1a		•	Physical W	9.924291	mil 🔻	
H Er	15.000	MI N/A		S L	7.993661 121.714173		¥ 1 2 + w++s++w+
Mur Cond	1.000 5.96E+7	N/A N/A	-	Synthesize	Analy	/ze	Calculated Results
Hu T	3.9e+034 1.400	mil	•	Electrical			KE = 6.978 KO = 4.870
Component Pa	arameters	16176	- -	ZE ZO	70.040 39.370	Ohm	AC_DB = 0.018 AO_DB = 0.032 SkinDepth = 0.025
Freq	10.000	GHz N/A	•	ZO C_DB	52.511663 -11.046865	Ohm ▼	
		N/A	· •	E_Eff	90.000	deg 🔻	

Values are consistent

Transmission lines

- http://rf-opto.etti.tuiasi.ro
- Transmission lines / Rogers
 - more precise formulas including
 - t, trace thickness
 - f, frequency
 - formulas for
 - microstrip
 - strip
 - coupled lines

	14	24	·MTE	E ·	4			. i		S. S		1	1.1	4	1		2	7 5	2	8	N	ITEE		с с.	27		4		8		÷.		8	2		5		17 1	2	·M	TEE	3. 1	1 I.	÷.		- 10 - 10 - 10
*	1		• Tee 1	• •		·				S. 8	: :8	18	÷:	<u></u>	1	8 B	(()	* *		8	. T	ee2		a		8 B	3 S	5 (S	8	s - 5		: :	ं	- 22	8 8.	S. 8	ं	- 10 - 1	: : :	·Te	e3	. See	2. 3		s - 15	
3. d	1	9	. Subs	st="A	lumin	a" .	5	· ·		19 B		5		2	12		<i>.</i>		12	<i></i>	. S	ubst	="Al	umin	a".	$\sim -\epsilon$	<i>.</i>	e 12	1	$\sim -\infty$	1	a a	- 87	53				5.5		Su	ibst=	"Alu	mina	" ·	e le	31 N
		- 2	V1=	13.6	6 mil	× .>				а »		~	×		3	6 R		н н.			. V	V1=1	3.66	5 mil		к. к.	38 - S		03	÷ - +	κ.	ж. э		-			e 04	- e - e		. vv	1=13	3.66	mil			
			VV2=	13.6	5 mil	5 5										e e				-	V	V2=1	3.60		-	x - 23								-	v			20 X		VV	2=13	3.66	mil			· · ·
		33	vv3=	13.0	o mii		2							-					33		v	v3=1	3.00	o mili		2. 2								-				25 2		vv	3=13).001	nıı			
			-			_				4		1		82	P						L				_				<u>د.</u>				82P	2			4.						-			
												17							L	10.1	1	- L							-												· –	ιг	_			
			10	۰ Li	-	1.1		<u> </u>		M	LIN		<u> </u>					· ·	MI		82 - S		5	1		5.5	10 A		MLI	IN	÷.	÷	Ţ		5 A.	1	M			1		4	· ·		6 (A)	
+	Ten	m	50 S.	÷ [1		10	т. т.	÷	IL	25		<u>.</u>	" Śr	ηP	1	<u></u>	in si	IL	29			. 1	a 31	10	5 A	÷	e 10	IL3	51		<u>.</u>	SnF) ⁻	10 (B)	ं	· 1L	32				£.	MLO	C	a 10	8
1.5	Ten	m 4	50 - 50				1	e 1		. SL		- Alu	mina	Sn	P1	e 1		2	SU	DST = 12	CAIU	mina	a".	8 Q	10	$\mathcal{N} = \mathcal{N}$		8 - 38	Suc	DST=:	Alum	ina".	SnF	2	5 - 2 -	× - 2	. 51	IDST=:	Alum	ina	6 - 38		TL33		s - 25	
15	Nu	m≔3	ke en	$\kappa >$				in off			-13.	00 11		Fil	e="D	:\f34	1433	a.s2	p"¦'_	417	10 0	nil .	1	ML	oc	$\mathbf{x} = \mathbf{x}$	- 28 - 13 - 13	÷	i -2	13.0	mil		File	="D:\	f3414	33a.	s2p"_	-13.0	0 mil	1. 1	• •	1	Subs	st="Ali	um in	a"
	Z=	50 C	hm .	L		12 60	Alumni S. mill	ina		- L-	500.	.05 11	Ψ.,							417.	1911	·•• .		IL3	0	ane.	·	a si	L-J	9.01	min	s - 5	- 3	4				554.0		1.	1. 31		W=1	3.66 1	mil .	
-	· .	15	12 22		10	264.1	1 mil	2. 2		60 B		20	2 4	- 62	69	2.2	- W	2 0	15	81				Sut	ost="	Alum	na"	v 10	S4	$\sim v$	2	6 (6	- 84	18	2 2	Q 8	1 10	18 1		4 3	1 10	- s. 1	L=31	5 mil	v 10	3.
<u>+</u>		12	20.00		L	04.1				12 10		- 12			12				22					VV=	13.6	6 m ii		5 16	8	2.0			8		2. 2					2. 1			2.1			
																								L=I	10.9	1 1111																				
<u></u>	1		10	<u> </u>	1	1.1		<u> </u>		2 - S	: 22		<u> </u>	1				· ·	1	1	8			8 B		5.5	10 A		S. 1	5 5	÷.	÷		10	5 A.	<u>.</u>		1000	1	1		1	2		6 (A)	
* *	3	35	50 N	· · ·	*	3 (Z	*	e e		3 B		15	2 X	ं	38	5		1 - 1	33	1	S) 8			ं ं	50	8 8 S		e 38	1	85 - 85	*	8 - 38	8	50	· ·	* *	·	10 1	÷.	3 A	5 8	1	N 5		e 36	्र
$\propto -2$	1	- 2	$\sim -\infty$	8 - P	2	9 - 9	5	к К		⊖ ÷		1	(\cdot, \cdot)		0	s - s	×.	• •	- 22	28	S 8	() (()	э. Э	8 - 28	53	$S_{\rm eff} = S_{\rm eff}$	3 9 - 3	×	23	≤ -8	10	9 - O		50	<u>e</u>	38 - S	- 28	- 50 - 5		2. 2	(3)	- 22	$S_{i} = S_{i}$	1	e - 12	- 22
$\mathbf{x} = \mathbf{x}$				_		э. сэ.	<i>K</i> .	• •		3 S		<i>.</i>	$\mathbf{x} = \mathbf{x}$		2	e 8	*	e - 14	13	19	e: 2		э.	×		${\bf x}_{i} = {\bf x}_{i}$	38 - 3	x - 3	29	K X	Э.	8 - 19	- 29	- 60	¥. 4	S = 2	- 19	- K K	*	$\gg -5$	e 13	- 24	$\mathbf{x}_{i} = \mathbf{x}_{i}$	- X	¥ 13	- 29
	- 22		MSub).	а. С	ч с.		2 - X		3 S	- 20		x - 3	- 22	34	e 1		a (a	34	<u>.</u>	e 4				-	c = c	34 - S	a (4)	8	e - 4		÷		-	e - 2	3 S	e (5	10 1		ж з	. s.	-85	$\mathbf{x} = \mathbf{x}$			14
<i>a</i> 3	- 22				1.0	a (a)	22	0 - 0	÷ 2	S - 8	8	1	$\hat{v} = \hat{v}$	- 62	82		0	a - a	2	8	8 G	÷	- S	a a	23	$\mathcal{D} = \mathcal{D}$	- S	a (4)	8	p = p	<i>\$</i>	s - s	8	23	6 - S	S2 - 5	1	2011	- 23	≈ -3	1 3	- 82	$\mathbf{v} = \mathbf{c}$	- Q 1	2 S2	- S.
			MSUB								,														•									•												
			Alumi	na											1				1.85																											
			H=15	mil												. r		1			_						. г	<u></u>	1		<u> </u>	_														
• •		1	Er=9.6				1	• •		* *	· •3					7			_				F *					• •	_		1	<u> </u>			+	L T	em	53 5				~			•	
×		- 2	Mur=1			×	×.	· ·		0 - 01	• •		×				×.		1	-	2			· _	-	× .		9 - 9	1				1	*C	· <	\$ T	erm:6	10.0		1	1.12	- 29	· · ·		×	S - 6
× ×	-	34	Cond=	5.96	E+/	1 A.	1	e 4		34 B	- 23	1	¥. 3	-	14	0		-						9 (A)				4 - 34		J .		-	-	23		> N	um=	4 · ·		8 6	÷ 34	-164	ю н		÷	
-9 - 9	12	15	Hu=3.	9e+0	34 m					а з	- 2	÷	÷ 4	1	19	N	ICFIL	21.2	- 8	MC	FIL	-	4	мс	FIL	$\tilde{v} = v$	M	CFIL		$\hat{c} = \hat{c}$	MCF	IL ·	3.	19	2 - A	. Z	=50 (Ohm .		9 Q	1 10	3.	i - i	- ¥ - 1		S. 1
			TanD-	0.00	01											C	Lin1			CLi	12 .			CLi	n3		CI	Lin4			CLin	5		-0	. 5											
			Rough	=0 m	nil											S	ub.st=	"Alu	mina	a'Sub	st="	Alun	nina'	" Sub	st="	Alumi	ina'Su	ubst=	"Alur	mina	'Subs	t="A	lumi	na"		1.										
			Rough	-011												۷	V=9.8	9 mil		VV=	12.5	5 mi	il 👘	W=	12.6	8 mil	W	=12.	55 m	il	W=9	.89 1	mil		=											
			58 - 56 										A 4		- 25	Ś	=7.89	mil		S=2	1.60) mil		S=2	24.95	5 mil	S=	=21.6	0 m il	Ĺ	S=7.	89 m	nil												5 - 35 -	
• •		1		• •			1	• •					• •		1	Ľ	=245	25 m	ul 🐪	Ľ=2	37.2	.4 mi	il [†]	L=2	36.7	'5 mil	L=	237	24 m	il i	L=24	5.25	mil	20	• •						1	~	5 - 5		• •	~ •
- X - X	1	- 54	10 10	92 - 34 1	- 57	$S = S_{1}$	12	${\bf v}_{i}^{*} = {\bf v}_{i}$	÷.	3 - 3	· 25	10	1.1	19	14	8 8			- 33	3	e 1	1	- i -	S - S	10	1. 11	14 1	1 1	14	i = i		8 B		2	$\mathcal{C} = \mathcal{C}$	- X - 3	a (3	18 - 2	- 10 - 10 - 10 - 10 - 10 - 10 - 10 - 10	$\beta = \beta$	1 34	- 35	$X_{i}^{i} = X_{i}^{i}$	- X.	i = 3i	- Si - R

- On all schematics you must have an substrate model/component
- Miscrostrip lines and coupled lines are computed in Linecalc for the same substrate

- We use components from the "Transmission Lines – Microstrip" pallete
 - MSUB substrate
 - MLIN series line
 - MLOC open-circuit shunt stub
 - MTEE modeling of T junction (shunt stub connection to main line)
 - MCFIL coupled line filter section (more accurate model than MCLIN – takes into account that two adjacent sections are physically close)

 Attention is required when inserting parameters for MTEE and MCFIL by checking in the schematic the width of the lines connected to each port.

- Usually there is a shift of the transfer function (red) towards lower frequencies compared to the ideal model (blue)
 - due to the MCFIL/MCLIN difference
- Tune the length of filter elements to move the filter bandwidth around fo = 5GHz

DC Bias

- https://rf-opto.etti.tuiasi.ro
- Agilent Application Notes
 - decoupling signal from DC Bias circuitry
 - DC Bias circuits for microwave transistors
- Appcad has tools for designing DC Bias circuits

DC Bias

DC Bias, typical choke

DC Bias, typical schematics/values

DC Bias, elements in E/S

 S_{11} (AT 4 GHz) = 0.52 \angle 154°

 S_{11} (AT 0.1 GHz) = 0.901 $\angle -14.9^{\circ}$

S'₁₁ (AT 4 GHz) = 0.52 \angle 154° UNCHANGED AT 4 GHz

S'₁₁ (AT 0.1 GHz) = 1.066 ∠ -8.5° |S₁₁|>1 AT 0.1GHz

DC Bias, bipolar transistors

Example project

Unify the two schematics

- L10 amplifier
- L12 filter

+		Ter Ter Nu Z=	rm rm 1 im = 50 (1 Ohm	 		lef	· · ·	TL(TL1 Z={ E= F={	DC 18 50.0 137. 5 GH	Ohm 9 Iz	[1 1 1 1 1 1	TLIN TL19 Z=50 E=14 F=5).0 0 46.2 GHz)hm		≌P SnF SnF File	2]-• 2) 21 ="D:	\f341	433a	.s2p	TL1 TL1 Z={ F={	N 5 50.0 108.8 5 GH] Ohn 3 Z	i		₹		TL TL Z= E= F=	OC 13 50.0 125. 5 GH	Ohr 2. Hz	• • • •	TL TL Z= E= F=	IN 14 50.0 =130 5 G) Oh 11 Hz	m		sa L Sn Sn File	P P2 ∋="C	0:\f34	143	3a.s	2p"	- TL TL Z=: E= F=	IN 16 50.0 136. 5 GI) Ohn 8 Iz	n	R	əf		TL0 TL1 Z={ E= F={	DC 17 50 O 124. 5 GH)hm 3 Iz	
Ξ	<u> </u>		кі і 2 і				к 1		 	•	э 1		 	•	•	 	•	•	· ·	3 3		 	× ×	э х	• •		e e	ж •			а Ц	<. 20	• •		3 1	3 3	ес 2		•	•		 		ж ж	•	• •		-				3 3	ес 13	
¥ 1					 1	ા.		2		÷.	ः		2	- 5	2	• •			· ·	10	·.		÷	4	ن د 	- 34	2	¥.	12 S	1	84	28	2	2 4	- 97	6	2	2 2	22	8	64 - B		8	- 12	Q 3	2 - Ki	- 23	10	20 2	2 3	. G	34	18	4 - 4
а с			2		 1 14	ं.		-		2	×.			1		· ·	10	2			·.	2 2	÷.	2		×.	-	10		4	1	10				8	20				-		1	1			- 18				1 14	1		а с. С
× -	:	•		6 d	 18	8	50	<u>8</u>	5 8	1	2	1 8	5) - 5	ं	<i>.</i>	2 X	5	<u> </u>	* *	1	et.		\$	ं	· 🕌	-			<u></u>		-	-	•	· 🛶	4		1			1	-	•		_		i Li	. *	50		5 3	5 B	2	1	5 - 5
	2	1	50 - S	8 B	 - 2	્ર	5.	8	s (*	1	2	50 - E	5 - 5	1	1	2 0	15	<i>t.</i> :	: · · ·	2	2	8 - 8	2	8	8 32	-		10	1	1		_			L	-	1		2.5			• •			-	Γ	_	+	1	Теп	m 👘	2	10	5 - S
9. D	9	-0	к. –	8 - P	 - 2	$^{\odot}$	1	•	<		2.8	62 - 1	· ·	- 22	2	$x \rightarrow \infty$	10	1	×	10	2	6 - 6	10	2	۰ <u>ــــــــــــــــــــــــــــــــــــ</u>	-		10	<u>, s.</u> 2		_	1	8 - P		_	_	1					8 - 8					10		3	Теп	m 2 [.]	2	- 52	с. с.
3 3	9	<	80	8 - S	 (- 3)	39	K.)	8	<. (F)		39 -	0	<	12		$\lambda = 20$	1	×.	н э	12	(5	e - e	(C)	57 - E						· ·		_	1		L	16.1	1		Č.,			ч ^с с			19.1	1 3	~		5	Nur	m=2	1	- 20	с. с.
4	5	£.,	÷		 - 3	- 5	÷			14	3	20	<i>i</i> - 1	14	а. С	4 S.	8	1	· ·	14	4	e 1	÷.	7		TI	1	¥2	× .			N .	8	с. 1	TI	8	2				4		1.1	TI	12	e 34	e.		·	.Z=5	50 O	hm	10	e - e
4			2		 	÷.	1	2		4	8			*	1	ч ч.	12	÷.	÷ ÷	4	×.		Ÿ.	4	5	Ze	=70.0	04 C) hm		Ze=	56.1	8 01	hm	Ze	e=55	.11	Ohm	1	Ze=5	6.1	8 Oh	m	Ze	=70.	03 C	hm		T			8	22	й ў. 1
a .			2				25				e.	•	5 - 5				28	0			e:		4			Zo	=39.3	37 C)hm		Zo=4	45.0	5 01	hm	Zo	=45	.76	Ohm		Zo=4	5.0	5 Oh	m	Zo	=39.	37 C	hm	1	<u> </u>			ं	12	
		•				÷						•					1				÷		•			E=) 0.			- 1	E=9	0.	• •	: :	E	=90	•		• 1	E=90).			E=	90			50			• •		•	n - n
		-	50 - E				*		• •	÷							*5		• •	38						F=!) GH	Z		. 1	F=5	GHz	Ζ.	• •	Ę=	5 G	Hz			F=5	GHz	4		E=	5. GH	IZ .		10			5 38.		*	

Result (unbalanced)

Result (unbalanced)

Result (~periodic in frequency)

Tune -> balance

- purpose: balance the gain characteristic of the amplifier (maximum at design frequency)
 - favor tuning lines at the end of the amplifier
 - eliminate/minimize effect of the tune on noise

•		Ter Ter Nu Z=	m m1 50 C	l Dhri	 			Ref		TL TL Z= E= F=	0C 18 50.0 137. 5 GH	Ohr 9 1z	■[m	TLIN TL19 Z=50 E=14 F=5	9 0.0 (46.2 GH	Ohm 2		sar ⊒ Sni Sni File	 ₽ ₽1 ₽="D):\f34	1143	3a.s	r T Z 2p"F	LIN L15 =50. =108 =5 G	0 OI 8.8 Hz	- nm		Re		TLOC TL13 Z=50 E=12 F=5 (0.0 Oh 25.2 GHz	m	TLIN TL14 Z=50 E=13 F=5 (1).0 C 30.1 GHz) Dhm	e t	^{sa™} 2]• "D:\f	34143	3a.s2		TLIN TL16 Z=50 E=13 F=5 (.0 Ohi 6.8 GHz	m	Ref		TL0 TL11 Z=50 E=1 F=5	C 7) Ohm 24.3 GHz	
	╧	-			 			•	е 1	· ·	3	э 4	е. 2	 	•	э 4		 	•	к 2	· ·		ес 23		с э . э		•	• •	· ·					ж	4 (4) 	e e L'E	* *	 		· · ·	e L	н н 1 н	3 3 3 4			-		ы н 1 н	
1	8.	10	1			/ (š.	8.	23	10	2 Q	12	S.	18	$\hat{v}_{1} = \hat{v}_{1}$	- 4	5	84 - S		- V	2	a (4	- B.	18	21 2		2	6 B	1 D)	12 D	4	a a	2	21 12	Q 8	u (u	2012	¥	2 Q	16 B		- 23	$\psi = \psi$	N 6	10	$\omega = \omega$	2	v 10	а. <i>1</i> .	. v. v.
4	8	20		3 3			8	2	i)	e a	2	4	2	2 1	8	4	94 - A		- 2	Υ.		8			2 2	ः			10 V	2	4 4			÷		10 10	2			- 20		9 - 9 1		20				a. 18	
2	81	5	5 A				2	5	<u>^</u>	t (1	8	5	<u>s</u> - 5	e d	1	2	• •		1	e e		10	5 - C			-		· • •	·	<u> </u>		· · · -	4		1		1				-		•	5. 5	•	1 I I	s. 18	· · ·
3	2	53	•	5 3	:	- 2	2	1	5		1	2	5	5 - S		3	3 - S	• •		2		2	5	<u>, s</u>	· •	1	. L		· * ·	1	· L		· •	1	L	1		. L.		Č •	1		_l ĭ	2	+ 1	_ Te	rm i	9 B	1 I I
	22	52		8 9		- 2	\sim	κ.		<		\sim	5	<	÷	2	\sim \sim	·			× 0		- 63	8 - 9	с э.	1		-	1. A			-		2.1		1 4		·			4	-				Те	m2	э «	
3	59	0	e 3	8 8		- 13	3		\mathbf{x}_{i}	к. э		3	8	c = c	e - 9	10	0.0	· ·	1		× 0	- 25		<i>i</i>	6 - 38				1.0									. L			1	1		10. 10.	15	٠Nu	ım=2	а - «	
- 2	-	8			, s	e 34	- 5	1	\mathbf{x}^{i}	к 3	- 92	-	8	e 1		1	3 - 5			х.	5 B	- 8	8	8.3		- 9			· ·			N .		• •		$e_{i} = e_{i}$	¥	CL	IN .			CLIN TI 12		-		.Z=	50 Oh	m .	1 - A
14	8	20		3		1	8	12	1	7 7	1	8	20	2 2	1	4	S4 - 8		- 2	аў.	а на С	8	10	2 3	2. 3	-	70	=70.0	14 Ob	m	70-	56 19	3 Ohm		70=55	11 OF	m	70	-56 19	Obn	n	70=7	0.03.0	hm				а <i>г</i>	
		:					ं	25					2			4				4			•				Zo	3 = 39.3	37 Oh	im ·	Z0=	45.05	5 Ohm	1. 2	Zo=45	76 01	nm	Zo	=45.05	5 Ohn	n	Zo=3	9.37 (Dhm	. <u> </u>	-		· ·	
2	8	•						50	8	· · ·	2	87	•	5 - T	e e		18 B	• •	•	÷	• •	÷	:0		e e	2	· E=	=90			E=9	0.		- E	E=90			- E=	90			E=90						· ·	A - A
	÷		15 3										-	8 - 8			28 . 2										. F=	-> GH	Ζ.		L=2	GHZ		. 1	r=0 G	ΠΖ.		. F=0	GHZ			L=2 (SUZ .	-				· ·	

Tune -> balance, result

Amplifier, Filter, Total

DC Bias elements in ADS schematic

- Insert L (RF chokes) and C (decoupling)
- additional 50Ω connection lines
 - source
 - load
 - between blocks

Gain -> Tune/Optimization

freq, GHz

Final result (Gain)

freq, GHz

Final result (Noise)

freq, GHz

Layout (Example)

 Temporary replacement of the transistors and lumped elements (LC) with elements for which ADS has case information

Layout (Example)

- Microwave and Optoelectronics Laboratory
- https://rf-opto.etti.tuiasi.ro
- rdamian@etti.tuiasi.ro